Beyond visual features: A weak semantic image representation using exemplar classifiers for classification

نویسندگان

  • Chunjie Zhang
  • Jing Liu
  • Qi Tian
  • Chao Liang
  • Qingming Huang
چکیده

Usually, the low-level representation of images is unsatisfied for image classification due to the well-known semantic gap, and further hinders its application for high-level visual applications. To deal with these problems, in this paper, we propose a simple but effective image representation for image classification, which is denoted as the responses to a set of exemplar image classifiers. Each exemplar classifier corresponding to a training image is learned using SVM algorithm to distinguish the image from others in different classes, and hence exhibits some discriminative information, which can also be regarded as a kind of weak semantic meaning. In such a one-vs-all manner, we can obtain the exemplar classifiers for all training images. We then train a linear classifier with structured sparsity constraints for each image category by taking advantages of the weak semantic image representation. Experiments on several public datasets demonstrate the effectiveness of the proposed method. & 2013 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Object categorization in sub-semantic space

Due to the semantic gap, the low-level features are unsatisfactory for object categorization. Besides, the use of semantic related image representation may not be able to cope with large inter-class variations and is not very robust to noise. To solve these problems, in this paper, we propose a novel object categorization method by using the sub-semantic space based image representation. First,...

متن کامل

Fine-Grained Image Classification Using Color Exemplar Classifiers

The use of local features has demonstrated its effectiveness for many visual applications. However, local features are often extracted with gray images. This ignores the useful information within different color channels which eventually hinders the final performance, especially for fine-grained image classification. Besides, the semantic information of local features is too weak to be applied ...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2013